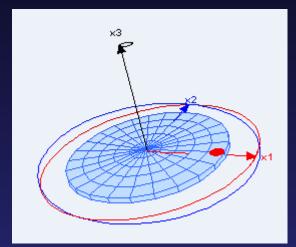
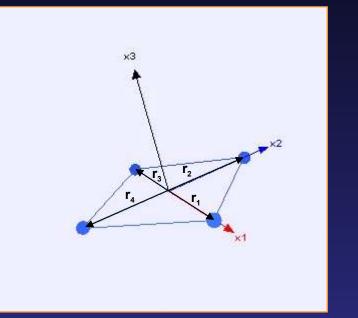
Feynman's Wobbling Plate Why Circles? More Detailed Explanation

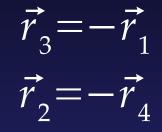


Slavomir Tuleja, Boris Gazovic, Alexander Tomori Gymnazium arm. gen. L. Svobodu, Humenne, Slovakia Jozef Hanc

Technical University, Kosice, Slovakia

Simplification – The Elementary Plate





Slavomir Tuleja et. al.

Plan of Attack

- Explore accelerations of the four particles of the elementary plate.
- Use symmetry to reduce to two particles.
- Decompose these accelerations to their radial and tangential components and prove that for a small magnitude of wobbling these accelerations are *centripetal:* they have only radial components; their *tangential components vanish*.

Slavomir Tuleja et. al.

Plan of Attack

 Finally notice that the motion of a real plate can be understood as a result of the synchronous motion of all the "elementary" plates (groups of four particles) it can be composed of.

Balancing Accelerations

Each particle of the elementary plate feels a force

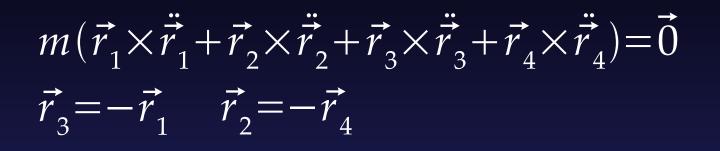
$$\vec{F}_i = m_i \ddot{\vec{r}}_i$$
 where $i = 1, 2, 3, 4$

These forces exert a zero torque on the plate

$$\vec{0} = \sum_{i} \vec{r}_{i} \times \vec{F}_{i} = \sum_{i} \vec{r}_{i} \times (m_{i} \ddot{\vec{r}}_{i})$$

Slavomir Tuleja et. al.

Balancing Accelerations



This yields something, Feynman calls *balancing accelerations*

$$\vec{r}_{1} \times \ddot{\vec{r}_{1}} + \vec{r}_{2} \times \ddot{\vec{r}_{2}} = \vec{0}$$

Slavomir Tuleja et. al.

Components of Accelerations

Decompose accelerations into their radial and tangential components and substitute into the acceleration balance equation.

$$\vec{a}_1 = \vec{a}_1 + \vec{a}_1$$
 tar

$$\vec{r}_1 \times \vec{a}_1 = \vec{r}_1 \times \vec{a}_1 \operatorname{rad} + \vec{r}_1 \times \vec{a}_1 \operatorname{tan} = \vec{r}_1 \times \vec{a}_1 \operatorname{tan}$$

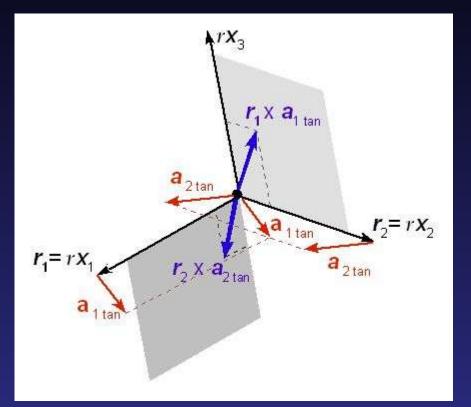
Slavomir Tuleja et. al.

Components of Accelerations

 $\vec{r}_1 \times \vec{a}_1 + \vec{r}_2 \times \vec{a}_2 = \vec{0}$ this becomes this $\vec{r}_1 \times \vec{a}_{1 \tan} + \vec{r}_2 \times \vec{a}_{2 \tan} = \vec{0}$

Slavomir Tuleja et. al.

Directions and Magnitudes of Accelerations



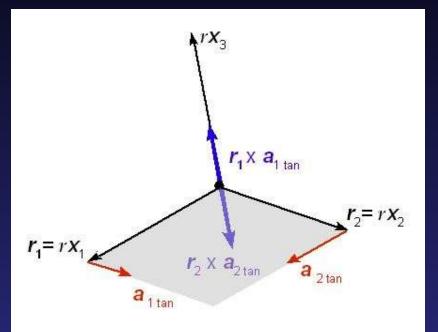
 $\vec{r}_1 \times \vec{a}_{1 \tan} + \vec{r}_2 \times \vec{a}_{2 \tan} = \vec{0}$

How to satisfy this condition?

Wrong way to satisfy it ...

Slavomir Tuleja et. al.

Directions and Magnitudes of Accelerations

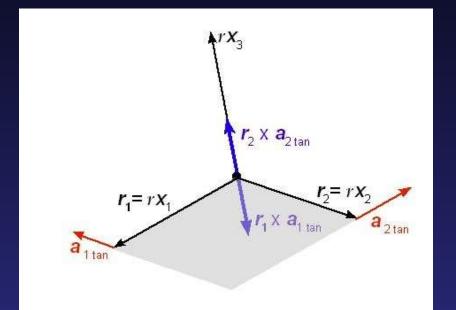


 $\vec{r}_1 \times \vec{a}_{1 \tan} + \vec{r}_2 \times \vec{a}_{2 \tan} = 0$

The first possibility!

Slavomir Tuleja et. al.

Directions and Magnitudes of Accelerations



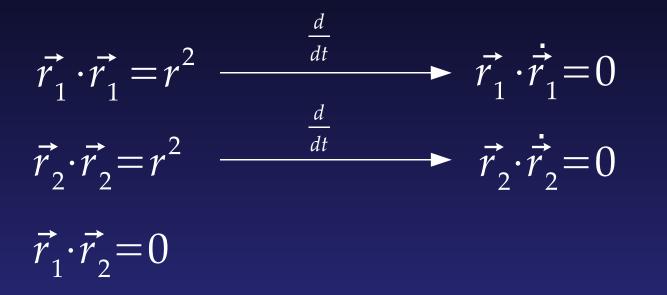
$$\vec{r}_1 \times \vec{a}_{1 \tan} + \vec{r}_2 \times \vec{a}_{2 \tan} = \vec{0}$$

Notice that in both cases $|\vec{a}_{1 \tan}| = |\vec{a}_{2 \tan}|$

The second possibility

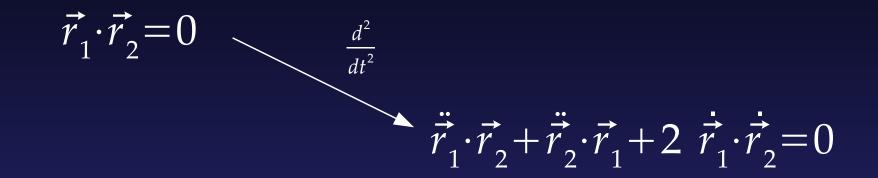
Slavomir Tuleja et. al.

The Elementary Plate is Rigid



Slavomir Tuleja et. al.

Magnitude of Tangential Accelerations



After decomposing the accelerations: $\vec{a}_{1 \text{ rad}} \cdot \vec{r}_2 + \vec{a}_{1 \text{ tan}} \cdot \vec{r}_2 + \vec{a}_{2 \text{ rad}} \cdot \vec{r}_1 + \vec{a}_{2 \text{ tan}} \cdot \vec{r}_1 + 2 \vec{r}_1 \cdot \vec{r}_2 = 0$ $\vec{a}_{1 \text{ rad}} \cdot \vec{r}_2 + \vec{a}_{1 \text{ tan}} = 0$ $\vec{a}_{1 \text{ rad}} \cdot \vec{r}_2 + \vec{a}_{2 \text{ rad}} \cdot \vec{r}_1 + \vec{a}_{2 \text{ tan}} \cdot \vec{r}_1 + 2 \vec{r}_1 \cdot \vec{r}_2 = 0$

Slavomir Tuleja et. al.

Magnitude of Tangential Accelerations

±2
$$r |\vec{a}_{tan}|$$
+2 $\vec{r}_1 \cdot \vec{r}_2 = 0$
Finally we obtain the expression for the magnitude of the tangential acceleration:

$$\left| \vec{a}_{\text{tan}} \right| = \left| \frac{\vec{r}_1 \cdot \vec{r}_2}{r} \right|$$

Slavomir Tuleja et. al.

Small Magnitude of Wobbling

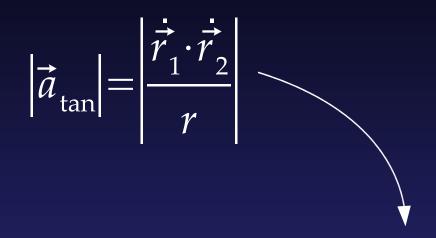


$$\vec{v}_{1} = \vec{r}_{1} = |\vec{r}_{1}| \cos \varepsilon_{1} \hat{x}_{2} + |\vec{r}_{1}| \sin \varepsilon_{1} \hat{x}_{3}$$

$$\vec{v}_{2} = \vec{r}_{2} = -|\vec{r}_{2}| \cos \varepsilon_{2} \hat{x}_{1} + |\vec{r}_{2}| \sin \varepsilon_{2} \hat{x}_{3}$$

Slavomir Tuleja et. al.

Small Magnitude of Wobbling



$$\left|\vec{a}_{tan}\right| = \frac{\left|\vec{r}_{1}\right|\left|\vec{r}_{2}\right|}{r} \sin\varepsilon_{1}\sin\varepsilon_{2} \approx \frac{\left|\vec{r}_{1}\right|\left|\vec{r}_{2}\right|}{r}\varepsilon_{1}\varepsilon_{2} \to 0$$

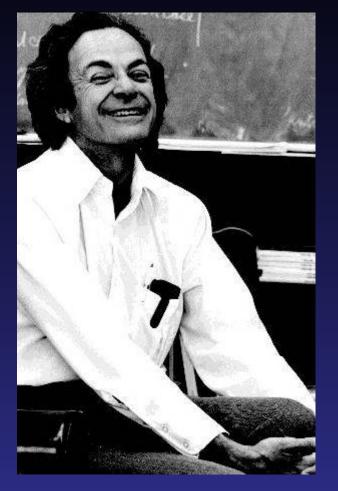
Slavomir Tuleja et. al.

Adding Elementary Plates

- The real plate can be composed of a large number of "elementary" (four-particle) plates.
- All the particles of those elementary plates have only radial accelerations and thus only radial interaction.
- Synchronous motion of all those elementary plates gives rise to the motion of the real plate.

Slavomir Tuleja et. al.

Conclusions



 We have shown that acceleration of every particle of the plate is centripetal, and THEREFORE

• every particle of the plate will trace out a circle.

QED

Thank you.

tuleja@stonline.sk

Gymnazium arm. gen. L. Svobodu Komenskeho 4 066 51 Humenne Slovakia

Slavomir Tuleja et. al.